Correction de l'examen national du baccalauréat international Science physique - session rattrapage 2019

EXERCICE I (7 points)

Partie 1 : Etude de la pile nickel-calcium

1. Calcul de $Q_{r,i}$:

Equation de la réaction : $Ni_{(aq)}^{2+} + Cd_{(s)} \rightleftarrows Ni_{(s)} + Cd_{(aq)}^{2+}$

L'expression du quotient de réaction :

$$Q_{r,i} = \frac{[Cd^{2+}]_i}{[Ni^{2+}]_i} = \frac{C}{C} = 1$$

On a : $Q_{r,i} < K = 4,5.10^5$ donc l'ensemble évolue spontanément dans le sens direct (sens de formation de Ni et Cd^{2+}).

2. Le schéma conventionnel de la pile :

Au niveau de la cathode se produit la réduction donc l'électrode de *Ni* représente le pôle positif de la pile.

Le schéma conventionnel est : \oplus $Ni_{(s)}/Ni_{(aq)}^{2+} :: Cd_{(aq)}^{2+}/Cd_{(s)} \ominus$

3. Equation de la réaction à chaque électrode :

Au niveau de la cathode (électrode de nickel) se produit la réduction des ions Ni^{2+} :

$$Ni_{(aq)}^{2+} + 2e^- \rightleftharpoons Ni_{(s)}$$

Au niveau de l'anode (électrode de cadmium) se produit l'oxydation de Ni:

$$Cd_{(s)} \rightleftharpoons Cd_{(aa)}^{2+} + 2e^{-}$$

4. Calcul de la variation Δm pendant Δt :

Tableau d'avancement de la réaction de réduction :

Equation de la réaction		$Ni^{2+}_{(aq)}$ +	2e-	$ ightleftarrows Ni_{(s)}$	Quantité de
Etat du système	التقدم	Quantité de	matière d'e ⁻		
Etat initial	0	$n_i(Ni^{2+})$		$n_i(Ni)$	$n(e^{-}) = 0$
L'état après la durée Δt	x	$n_i(Ni^{2+})-x$		$n_i(Ni^{2+}) + x$	$n(e^-)=2x$

D'après le tableau :

$$\begin{cases} \Delta n(Ni) = x \\ n(e^{-}) = 2x \end{cases} \Rightarrow \Delta n(Ni) = \frac{n(e^{-})}{2} \Rightarrow \frac{\Delta m}{M(Ni)} = \frac{I.\Delta t}{2F} \Rightarrow \Delta m = \frac{I.\Delta t}{2F} . M(Ni)$$

A.N:
$$\Delta m = \frac{0.3 \times 5 \times 3600}{2 \times 9.65.10^4} \times 58.7 \implies \Delta m = 1.64 g$$

Partie 2 : Etude de quelques réaction de l'acide acétylsalicylique

- I Dosage d'une solution d'acide acétylsalicylique
- 1. L'équation de la réaction de dosage :

$$AH_{(aq)} + HO_{(aq)}^{-} \longrightarrow A_{(aq)}^{-} + H_2O_{(l)}$$

2.1. Détermination de la concentration C_A :

D'après la relation d'équivalence : $C_A \cdot V_A = C_B \cdot V_{BE}$ d'où : $C_A = \frac{C_B \cdot V_{BE}}{V_A}$

A.N:
$$C_A = \frac{10^{-2} \times 10}{10} \Longrightarrow C_A = 10^{-2} \ mol. L^{-1}$$

2.2. Montrons la valeur de m :

On a :
$$C_A = \frac{n}{V} = \frac{m}{M(C_9 H_8 O_4).V}$$
 alors : $m = C_A.M(C_9 H_8 O_4).V$

A.N:
$$m = 10^{-2} \times 180 \times 278.10^{-3} = 0.5 g$$

3. Le choix de l'indicateur coloré :

L'indicateur coloré convenable est celui dont la zone de virage contient le pH_E .

D'prés l'équation de la réaction de dosage à l'équivalence le mélange réactionnel contient les ions

 A^- et l'eau et les ions Na^+ , donc le milieu est basique et son $pH_E > 7$

L'indicateur coloré convenable est le rouge de crésol.

II- Etude de la réaction entre les ions hydrogénocarbonate et l'acide acétylsalicylique

1. Les quantités de matière initiales des réactifs :

$$n_0(C_9H_8O_4) = \frac{m}{M(C_9H_8O_4)} \qquad \text{A.N}: \ n_0(C_9H_8O_4) = \frac{0.5}{180} \approx 2.8.10^{-3} \ mol = 2.8 \ mmol$$

$$n_0(HNO_3^-) = [HNO_3^-]_0. \ V = C.V \ \text{A.N}: \ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol$$

2. Dressage du tableau d'avancement :

Equation de la réaction		$C_9H_8O_{4(aq)} + HNO_3^- \rightarrow C_9H_7O_{4(aq)}^- + CO_{2(g)} + H_2O_{(l)}$							
Etat du système	Avancement	Quantité de matière en (mmol)							
Etat initial	0	2,8	5		20,	0	en excès		
Etat intermédiaire	x	2, 8 - x	5 – x		x	x	en excès		
Etat final	x_{max}	$2, 8 - x_{max}$	$5-x_{max}$		x_{max}	x_{max}	en excès		

3- L'avancement maximal x_{max} :

On considère $C_9H_8O_4$ réactif limitant, on écrit : 2,8 - $x_{max} = 0$ donc : $x_{max} = 2,8$ mmol

On considère HNO_3^- réactif limitant, on écrit : $5-x_{max}=0$ donc : $x_{max}=5$ mmol

L'avancement maximal est : $x_{max} = 2.8 \, mmol$.

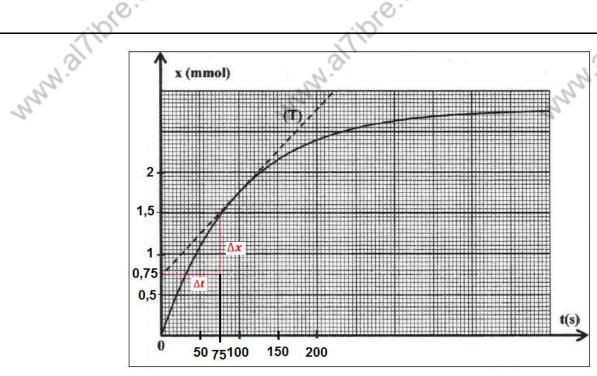
4. Calcul de la vitesse volumique de la réaction à t=100 s :

D'après la définition de la vitesse volumique : $V(t) = \frac{1}{V} \cdot \frac{dx}{dt}$

A l'instant t=100 s la vitesse s'écrit : $V(t) = \frac{1}{V} \cdot \left(\frac{\Delta x}{\Delta t}\right)_t$

 $\left(\frac{\Delta x}{\Delta t}\right)_t$ est le coefficient directeur de la tangente de la courbe x(t) à t=100 s.

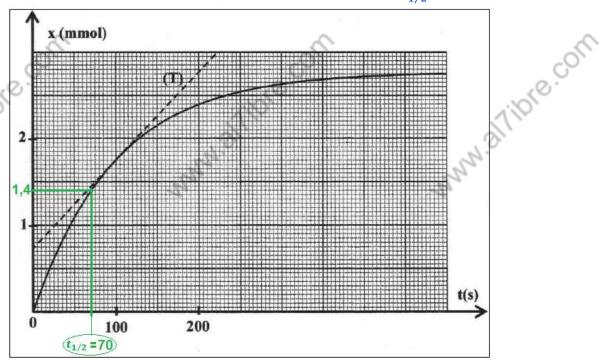
$$V(t) = \frac{1}{10.10^{-3}} \cdot \left(\frac{1,5 - 0,75}{75 - 0}\right)_t = 1 \ mmol. \ L^{-1}. \ s^{-1} = 10^{-3} \ mol. \ L^{-1}. \ s^{-1}$$



5. La détermination graphique de $t_{1/2}$:

Au temps de demi-réaction on a : $x(t_{1/2}) = \frac{x_{max}}{2} = \frac{2.8}{2} = 1.4 \ mmol$

Graphiquement l'abscisse de l'avancement $1,4\ mmol$ donne la valeur $t_{1/2}=70\ \mathrm{s}$.



EXERCICE II ((2,5 points)

Etude de la diffraction de la lumière

1. L'expression juste :

L'analyse dimensionnelle de l'expression $\lambda = \frac{a.L}{2D}$: $[\lambda] = \frac{[a].[L]}{[D]} = \frac{[L].[L]}{[L]} = [L]$

$$[\lambda] = \frac{[a] \cdot [L]}{[D]} = \frac{[L] \cdot [L]}{[L]} = [L]$$

L'unité de la longueur d'onde λ est le mètre donc l'expression juste est : $\lambda = \frac{a.L}{2D}$.

2.1. L'écart angulaire θ augmente si la longueur d'onde λ augmente : juste.

D'après l'expression de l'écart angulaire $\theta = \frac{\lambda}{a}$, quand λ augmente θ augmente.

2.2. La largeur L de la tâche centrale est proportionnelle à la largeur a de la fente : Faux

D'après l'expression de la largeur L on a : $L = \frac{2\lambda . D}{a}$ donc : L est inversement proportionnelle à la largeur a de la fente.

3. Détermination de λ_R :

$$\lambda_R = \frac{a. L_R}{2D}$$

A.N:
$$\lambda_R = \frac{0.3.10^{-3} \times 8.5.10^{-3}}{2 \times 2} = 6.375.10^{-7} \text{ m} \implies \lambda_R = 637.5 \text{ nm}$$

4. Comparaison de L_R et L_B :

on a : $\lambda = \frac{a.L}{2D}$ donc : λ est proportionnelle à la largeur L .

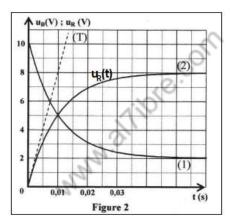
$$\lambda_R > \lambda_B \implies L_R > L_B$$

EXERCICE III (5 points)

Partie 1 : Etude du dipôle RL et du circuit RLC série

- I Etude du dipôle RL
- 1. La courbe qui correspond à $u_R(t)$:

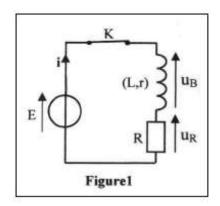
A t=0 on a : i(0) = 0 et d'après la loi d'ohm $u_R(0) = R$. i(0) = 0 donc la courbe $u_R(t)$ passe par l'origine des axes, elle correspond à la courbe 2.



2. L'équation différentielle vérifiée par la tension $u_{\scriptscriptstyle R}(t)$:

Loi d'additivité des tensions : $u_R + u_B = E$

$$\begin{aligned} \text{Loi d'ohm} : u_R &= R.i \text{ et } u_B = \text{L}.\frac{\text{di}}{\text{dt}} + \text{r.i} \\ \text{L}.\frac{\text{di}}{\text{dt}} + \text{r.i} + R.i &= E \implies \text{L}.\frac{\text{di}}{\text{dt}} + (\text{R} + r).i = E \\ \frac{\text{di}}{\text{dt}} + \left(\frac{R+r}{L}\right).i &= \frac{E}{L} \implies \frac{\text{d}(\text{Ri})}{\text{dt}} + \left(\frac{R+r}{L}\right).R.i &= \frac{R.E}{L} \\ \frac{\text{d}u_R}{\text{dt}} + \frac{R+r}{L}.u_R &= \frac{R.E}{L} \end{aligned}$$



3. Déduction de l'expression de U_R en régime permanent :

En régime permanent on a : $i = I = cte \implies u_R = U_R = R.I = Cte$

$$d'où: \frac{du_R}{dt} = 0$$

L'équation différentielle s'écrit : $\left(\frac{R+r}{L}\right)$. $U_R = \frac{R.E}{L} \implies (R+r)$. $U_R = R$. $E \implies U_R = \frac{R.E}{R+r}$

4. Calcul de r:

$$U_R = \frac{R.E}{R+r} \implies R+r = \frac{R.E}{U_R} \implies r = \frac{R.E}{U_R} - R \implies r = R\left(\frac{E}{U_R} - 1\right)$$

D'prés la courbe (2) de la figure 2 dans le régime permanent on a : $U_R = 8 \text{ V}$

A.N

$$r = 40 \times \left(\frac{10}{8} - 1\right) = 10 \,\Omega$$

5. La détermination graphique de τ :

$$\tau = 0.01 \, s$$

6. Vérification de la valeur de L:

L'expression de la constante de temps du dipôle RL :

$$\tau = \frac{L}{R+r} \implies L = \tau(R+r)$$
 A.N: $L = 0.01 \times (40 + 10) = 0.5 H$

1. Le régime correspond aux courbes de la figure 4 :

Est le régime pseudopériodique.

2. Détermination de la valeur de C:

L'expression de la période propre : $T_0 = 2\pi\sqrt{L.C} \implies T_0^2 = 4\pi^2L.C \implies C = \frac{T_0^2}{4\pi^2L}$

On a $T \approx T_0$ et d'après la courbe $u_C(t)$ de la figure 4 on trouve graphiquement $T = 10 \ ms$.

A.N:
$$C = \frac{(10.10^{-3})^2}{4 \times 10 \times 0.5} = 5.10^{-6} F$$
 d'où : $C = 5 \mu F$

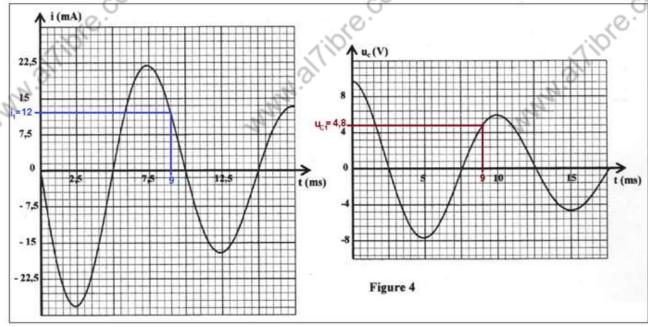
3. Calcul de l'énergie totale E_{t1} à $t_1 = 9ms$:

$$E_T = E_e + E_m = \frac{1}{2}C.u_C^2 + \frac{1}{2}L.i^2$$

A $t_1 = 9ms$, en utilisant les deux courbes de la figure 4 les deux valeurs :

$$u_{C1} = 4.8 V \text{ et } i_1 = 12 \text{ } mA \text{ }.$$

$$E_{t1} = \frac{1}{2}C.u_{C1}^2 + \frac{1}{2}L.i_1^2$$
 A.N: $E_{t1} = \frac{1}{2} \times 5.10^{-6} \times 4.8^2 + \frac{1}{2} \times 0.5 \times (12.10^{-3})^2 = 9.36.10^{-5} J$



Partie 2- modulation d'amplitude

1. Détermination de F_P et f_m :

L'expression de $u_3(t): u_3(t) = Ku_1(t).u_2(t) = K[U_0 + U_1cos(2\pi f_1.t)].U_2cos(2\pi f_2.t)$

$$u_3(t) = K.U_2.[U_1.\cos(2\pi f_1.t) + U_0].\cos(2\pi f_2.t)$$

$$u_3(t) = 0.1[0.6.\cos(2\pi 10^4.t) + 0.8]\cos(6\pi 10^5.t)$$

On a:

$$F_P = f_2 = 3.10^5 \ Hz \ et \ f_m = f_1 = 10^4 \ Hz$$

2. Calcul du taux de modulation m:

$$m = \frac{U_1}{U_0}$$
 Avec: $U_1 = 0.6 V$ et $U_0 = 0.8 V$ d'où: $m = \frac{0.6}{0.8} = 0.75$

3. La qualité de modulation :

Pour la modulation soit bonne il faut que les deux conditions soient vérifiées :

$$m < 1$$
 et $F_P \ge 10 f_m$

$$F_P = 3.10^5 \ Hz$$
 et $10 \ f_m = 10^5 \ Hz$ donc : $F_P > 10 \ f_m$ et puisque $m < 10 \ f_m$

Donc la modulation est bonne.

EXERCICE IV (5,5 points)

Partie 1- Mouvement d'un solide dans le champ de pesanteur

1- Définition de la chute libre :

Un corps est en chute libre s'il est soumis seulement à son poids.

2. Etablissement de l'équation différentielle vérifiée par V_z :

Système étudié : { la balle}

Bilan des forces : \vec{P} poids de la balle

Application de la deuxième loi de Newton : $\vec{P} = m \cdot \vec{a}_G$

$$m. \vec{g} = m. \vec{a}_G \implies \vec{a}_G = \vec{g}$$

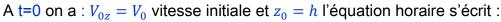
Projection sur l'axe Oz : $a_z = -g$

L'équation différentielle : $\frac{dV_Z}{dt} = -g$

3. Montrons l'équation horaire du mouvement de G :

On a :
$$\frac{dV_Z}{dt} = -g$$
 intégration : $V_Z = \frac{dz}{dt} = -g \cdot t + V_0$ intégration :

 $z = -\frac{1}{2}g.t^2 + V_{0z}.t + z_0$



$$z = -\frac{1}{2}g.t^2 + V_0.t + h$$

4. L'expression numérique de la vitesse :

L'équation de la courbe de la figure 2 s'écrit :

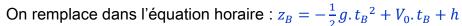
$$a_z = \frac{\Delta V_z}{\Delta t} = \frac{10 - 0}{0 - 1} = -10 \text{ m. s}^{-2}$$

A t=0 on a : $V_0 = 10 \ m. \ s^{-1}$

$$V_z = -10t + 10$$

5. Montrons que D = 5,75 m:

D'après la courbe de la figure 2 quand $V_B=3\ m.\ s^{-1}$ on a : $t_B=0.7\ s.$



A.N:
$$z_B = D = -\frac{1}{2} \times 10 \times 0.7^2 + 10 \times 0.7 + 1.2 = 5.75 m$$

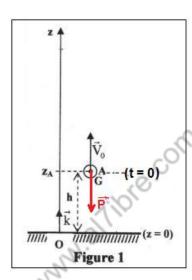


Figure 2

6. Le centre d'inertie G atteint-il le point B?

Cherchons t_1 l'instant ou la vitesse de la balle s'annule

$$0 = -10. t_1 + V_0'$$
 d'où: $t_1 = \frac{V'}{10} = \frac{8}{10} = 0.8 s$

On remplace dans l'équation horaire : $z_1 = -\frac{1}{2}g.t_1^2 + V_0'.t_1 + h$

A.N:
$$z_1 = d = -\frac{1}{2} \times 10 \times 0.8^2 + 10 \times 0.8 + 1.2 = 4.4 \text{ m}$$

On constate que d < D la balle n'atteint pas le point B.

1. Détermination de $E_{pt max}$:

A t=0 on a E_{pt} maximale sa valeur est $E_{pt max} = 0.05 J$

Déduction de C:

$$E_{pt\;max} = \frac{1}{2}C.\theta_{max}^2$$
 d'où : $C = \frac{2E_{pt\;max}}{\theta_{max}^2}$ A.N : $C = \frac{2\times0.05}{0.5^2} = 0.4 \; N.m. rad^{-1}$

A t=0 la vitesse du disque est nulle donc : $E_{C0} = 0$ et $E_{pt0} = E_{pt max}$

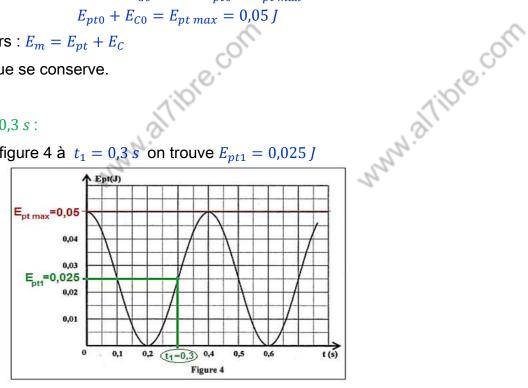
$$E_{pt0} + E_{C0} = E_{pt max} = 0.05 J$$

Puisque $E_m = 0.05 J$ alors : $E_m = E_{pt} + E_C$

Donc l'énergie mécanique se conserve.

3. Valeur de E_{C1} à $t_1 = 0.3 s$:

D'après le graphe de la figure 4 à $t_1 = 0.3 \, s$ on trouve $E_{pt1} = 0.025 \, J$



$$E_m = E_{pt1} + E_{C1} \text{ d'où } : E_{C1} = E_m - E_{pt1}$$

A.N: $E_{C1} = 0.05 - 0.025 = 0.025 J$

